

2005 BC2 (Calculator)

The curve above is drawn in xy-plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta)$.

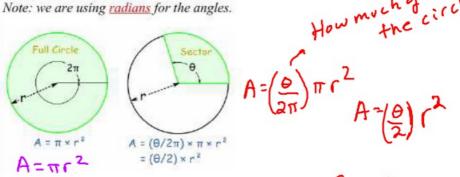
- a. Find the slope of the curve at the point $\theta = \frac{\pi}{2}$.
- c. Find the angle θ that corresponds to the point on the curve with x-coordinate -2.
- d. For $\frac{\pi}{2} < \theta \le \frac{2\pi}{3}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?

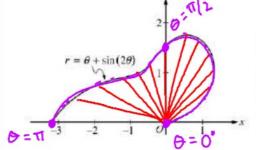
e. Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that corresponds to the point on the curve in the first quadrant with greatest distance from the origin. Justify your answer.

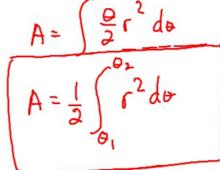
Polar Area

Area of a Sector

You can work out the Area of a Sector by comparing its angle to the angle of a full circle.





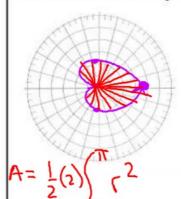


The curve above is drawn in xy plane and is described by the equation in polar coordinates $r = \theta + \sin(2\theta)$ for $0 \le \theta \le \pi$, where r is measured in meters and θ is measured in radians. The derivative of r with respect to θ is given by $\frac{dr}{d\theta} = 1 + 2\cos(2\theta).$

Find the area bounded by the curve and the x-axis

$$A = \frac{1}{2} \int_0^{T} (\theta + \sin(2\theta))^2 d\theta =$$

Find the area inside the polar curve
$$r = 2(1 + \cos\theta)$$
.



$$A = \frac{1}{2} \int_{0}^{2\pi} (2 + 2\cos\theta)^{2}$$

$$A = \frac{1}{2} \int_{0}^{2\pi} (2 + 2\cos\theta)^{2} (2 + 2\cos\theta)$$

$$A = \frac{1}{2} \int_{0}^{2\pi} (2 + 2\cos\theta) (2 + 2\cos\theta)$$

$$A = \frac{1}{2} \int_{0}^{2\pi} 4 + 8\cos\theta + 4\cos^{2}\theta$$

$$\frac{0=2\sin(2\alpha)}{2}$$

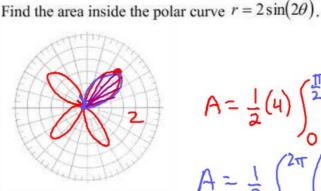
$$0=\sin(2\alpha)$$

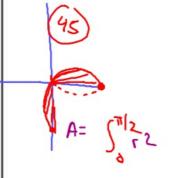
$$\frac{26}{2} = 0.\pi \cdot \frac{2\pi}{2} \cdot \frac{2\pi}{2}$$

$$\pi_1 \frac{\pi}{\tilde{s}} (0 = 0)$$

$$A = \frac{1}{2} \frac{1}{4} \int_{0}^{2\pi} z^{2}$$

$$V = \int_{3\mu}^{\frac{\pi}{11}}$$

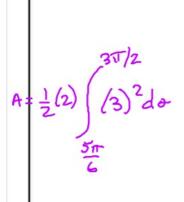




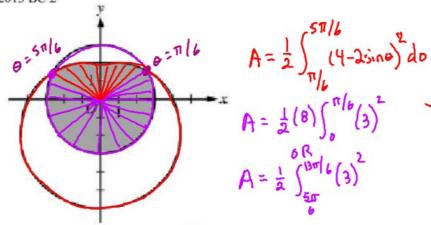
$$A = \frac{1}{2}(4) \int_{0}^{\frac{17}{2}} (2\sin(2\theta))^{2}$$

$$A = \frac{1}{2} \int_{0}^{2\pi} (2\sin(2\theta))^{2}$$

$$A = \frac{1}{2} (8) \int_{0}^{\pi/4} (2\sin(2\theta))^{2}$$



2013 BC 2



The graphs of the polar curves r = 3 and $r = 4 - 2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.

- Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 - 2\sin\theta$. Find the area of S.
- A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $(\theta = t^2)$ Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.

$$X = C \cos \theta$$

$$-1 = (4 - 2 \sin^2 t) \cos(t^2)$$

$$y_1$$

$$y_2$$

For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.